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SUMMARY

Digital filters are quantitatively evaluated for their effects on chromatographic
digital data. Changes in peak-shape parameters for Gaussian and asymmetrical
chromatographic peaks are described by the error levels introduced. Reductions in
baseline noise are discussed in terms of reducing the amplitude and the frequency
response. An example of the practical considerations and trade-offs in implementing
digital filters in a microprocessor-based data sysiem is presented, so as to minimize
peak distortion, and enhance peak detection and signal-to-neise ratio.

INTRODUCTION

Numerical data-handling techniques are extensively applied in chromato-
graphic data systems today to enhance effectively the information content, signal-
to-noise ratio (S/N), accuracy, and precision of analytical signals. Many of these ad-
vanced techniques have been reviewed by Anrnino® and Hieftje?->. However, minimal
attention has been given to the quantitative aspects of digital filters since the publi-
cation of the landmark paper in the analytical literature by Savitzky and Golay® in
1964. Their paper treated numerical smoothing and difierentiation by least-squares
procedures and presented tables of convoluting integers and their normalizing factors.
These tables were later corrected’, but the effects of the filters and interpretation for
their application to chromatographic systems has not been reported. Digital filters
are usually applied as part of the signal-processing algorithms of incoming signals
to digital data systems and are therefore critical in terms of subsequent data pro-
cessing and interpretation programs. They are rarely an opefator-controlled param-
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eter in chromatography data systems and therefore it is even more mportant that
their effects, potential power, and limitations be understood.

Noise in its various forms is a random error that directly affects the precision
and useable range of analytical measurements. Thus it is desirable to remove as much
noise as possible without distortion of the signal beyond acceptable limits. Several
analog and digital §ltering techniques are available.

Passive analog filters (LRC types) have the advantage of low cost and sim-
plicity of design and construction. However, they are (1) limited in most cases to real-
time signals, (2) cannot produce derivatives of the input signal (aithough other analog
techniques are available for doing so), (3) must be voltage and impedance matched
to the signal source, (4) show variations from one urit to the next owing to com-
ponent tolerances, and (5) do not lend themselves to systems requiring dynamic
changes in filiering characteristics. Active analog filters have the same basic charac-
teristics as passive filters, except ihat the filtering characteristics can be varied over
limited ranges and lower frequencies are more easily filtered. These filters can add
amplifier noise to the signal and are complex and expensive fo implement. These types
of filters are commercially availahle today for chromatography systems.

Digital filters ure numerical counterparts to analog filters. Hard-wired digital
filters (1) can implement sophisticated algorithms, such as Fast Fourier Transforms,
(2) are very fast, (3) can operate on either real-time or data stored in memory, and (4)
can produce derivatives of the input signal. These types of filters are costly, may be
complex to design into a system, have limited adaptability, and require accurate digi-
tization.

Software-based digital filters take advantage of the logical and arithmetic
capabilities of digital computers and may be adaptive. They (1) are the most versatile
in that very sophisticated filters and numerical techniques can be designed, (2) may
be changed in real-time and optimized for the S/V and frequency response desired,
(3) are simple to implement and use, and {4) allow the versatibility of post analysis
recalculations. Hard-wired analog and digital filters must be replicated for each input
channel to be filtered, whereas any number of different software filters (from 1 to n)
can be applied to m channels of incoming signals.

It should be pointed out that, in addition to analog and digital filters, other
techniques may also be used for noise reduction or S/N enhancement. These tech-
niques include integration (analog and numerical), modulation, digitization, data
bunching, correlation, synchronous detection, multiple pass filters, and averaging. In
all cases, these techniques should be characterized in terms of their gain in S/N, fre-
quency response, and effects on precision, resolution, and accuracy (Z.e., reduction in
systematic error). As an example, it is imperative that the data-bunching rate in chro-
matography data systems and integrators be set or selectable in terms of the frequency
of response (peak width) rather than by the number of data points. The effects of
chromatographic noise have been treated in terms of their effect on the precision and
accuracy of statistical momentsS, digitization errors’-8, retention time measurements®,
detection limits'®, and the design of chromatography data systems to handle sensitive
peak detection and spike trapping®:.

This paper follows directly from the one by Savitzky and Golay?*, which is
recommended as an introduction to the subject. Therefore, we will treat only moving
average {(MA) and polynomial smoothing functions as digital filters here in detail.
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CHARACIEREAﬁON OF DIGITAL FILTERS

Digital filters basically serve to attenuate random noise and/or to differentiate
the signal. The filters discussed are of the symmetric, non-recursive, linear type
which operate only on the input signal. One requirement of these filters is that the
digitized data must be in fixed time-increments in order to be smoothed with the
Savitzky-Golay convolutes®. Secondly, data to be filtered will be assumed to be a
continucus function such as chromatographic peaks, as either resolved or unresolved
elution profiles. High-frequency spikes are “trapped” by such filters and are thus re-
duced in amplitude. Repetitive spiking at high frequencies may introduce a systematic
error in the data, but this is assumed to be a minimal effect in stable, clean chromato-
graphic systems and therefore is not considered in this work. Thirdly, polynomial
smoothing requires that an odd number of data points be fit.

Polynomial smoothing functions will be given by

+m
Y= 2wy, )]
where
Yo = amplitude of the smoothed value
p = position of smoothed value within convolution interval. p =0
(midpoint) for symmetrical filters
n = order of the smoothing formula
2 m <+ 1 = number of data points in the smooth
wiD = convolute coefficient of the ith data point for smoothing operations
Yo = amplitude of the /th data point before smoothing
such that
+m
E wp =1 2)
i=-—rs
and
wip = W n &)
It should be noted for later reference that if # is even, e.g., n = 2 g, then
Wﬁﬁ) — wf,ziu-l) (4)

which says that the formula obtained for finding the smoothed value at the midpoint
of the interval (p = 0) by using an even-degree polynomial is the same as that ob-
tained with the next higher odd-degree polynomial.

For the special case where n = 1, as for linear smoothing formulas,

1

Ay -
Yoi 2m+1 S
it can be seen that
+m -
(1) — yl
= 2 emED ' ' ©

which is the MA digital filter.
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Effects of smoothing
In chromatography, the error signal or noise may be considered as random at

high frequencies whereas the errors at low frequency are more systematic as they ap-
proach the bandwidth of the elution profile. Therefore, it would be desirable to de-
sign a lowpass filier for error signals at frequencies higher than that of the signal to
be observed. From eqgn. 1 it may be shown that the results of a polynomial smoothing
functicn may be expressed as a function of the frequency, w, in terms of a filter func-

tion, given by

f(jew) = wy + 2 5 w;-cos i wdt N
where
F(jw) = f(jo) * y(jw) ®

and 7(jw) and y(jo) are the Laplace transforms of ¥(f) and ¥(z), respectively.
This may be illustrated by considering a 7-point linear smooth which is given
by egn. 5 as

1
e — L ©)

7

so thati the filter function will be

f(jw) = ,1}—(1 + 2cos wAt +— 2 cos 2wAr 4+ 2 cos 3 wdr) 10)

which is illustrated in Fig. 1a. It can be seen that for the frequencies where f(jw) = 1,
the original data will be passed by the smoothing function without change. For
frequencies where f(jw) << 1 1, the original data will be attenuated by the smoothing
function. In the case of f(jw) < 0, the filter function is given by | f(jw) |. The negative
values relate only to phase shifts in the data.

When data points are sampled at data rate intervals of A¢, data components
and noise with frequencies of greater than 1/4r will not be completely filtered in the
smoothed data. This effect can be predicted from Fig. I by the cyclic nature of the
filter function, as well as the attenuation factor as a function of frequency. Although
this smoothing function is 2 good lowpass filter, differeni fiiter functions may be
applied as shown in Fig. 1. The 7-point second-order smooth will follow the true
peak shape more closely than a linear smooth and therefore distort the peak shape
parameters less. However, it can be seen from Fig. 1b that a second-order filter func-
tion will be less effective for high frequencies than one of a2 lower order when (2 m+-1)
is 2 constant. B

When it is desired to remove the higher-frequency noise components in order
to enhance the analytical signal information content, or to develop a filter with a lower
bandpass, or one with less cyclic character, a number of alternatives are availabie;
all of which may be predicied from their filter function: {1) The data may be pre-
filtered with notched analog cutoff filters, as previously discussed. (2) The sampling
time interval, Az, may be increased so that higher frequencies fall in the region where
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Fig. 1. Filter functions as a function of frequency for (a) a 7-point linear smooth, (b) a2 7-point second-
order smooth, () two passes with a 7-point linear smooth, and (d) a truncated Fourier series.

wAz > L so that they will be cut off by the analog-to-digital converter (ADC) and
further at tenuated by thedigital filter. (3) Increase m so as to lower the bandpass of the
polynomial filter function. {4) Use a multipass filter as shown in Fig. 7c, where the
filter function of k£ smooths is [f(jw)]*. (5) Use operators other than polynomials, as
shown in Fig. 7d for a Fourier series. Such functions may be tailored to the function-
ality of the response curve when it is well defined. All of these filters are extremely
versatile, precise, and are well defined when implemenied in software. Further it is
then possible to update the weighting coefiicients on the basis of the incoming signal
if it is time dependent, as in the case of chromatography. The resulis and discussion
presented in this work will treat the effects of sampling times, order cf the polynomial,
and multipass filters (Nos. 24 above). Only polynomial and moving average filters
will be discussed because they are easier tc implement in small data systems and will
be shown to be more than adequate for most chromatographic applications when

properly appiied.

Optimization of the filter band width

Van Rijswick?? has shown that optimum detection of a Gaussian peak for a
filter band width that maximizes the signal-to-noise ratio after filtering, (S/N),,
is given by

=

s 0.874  [w,\*® s g
(—l‘T)r T o, v [_(i—gfzjs—] an
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where A is the peak area, o, the mean amplitude of the normal random noise before
filtering, w, is the Gaussian peak width. Az is the sampling interval, (note that w_ jAr

is the sampling density), and K = w,/w,, or the ratio of the filter widih to the Gaussian
neak width, It should be noted that filterine will increase the neak width to (uy 2 4w 2\3‘
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or {1 + K?* K will thus reach an optimum at K = 2.24 so that for optzmum peak de—
tection, the width of the matched filter should be proportional to the width of the
chromatographic peak. Aithough detection limits are not discussed in the resalts sec-
tion of this paper, it is important to point out that digital filters may enhance or reduce
the detection limits of any chromatographic detector, affect the area recovery and
p2ak width, and must be applied in relationship to the sampling frequency.

EXPERIMENTAL

All of the computer programs for calculations and simulation were run on a
PDP-8/L. laboratory computer system with 8 K of core (Digital Equipment Corp.).
The system includes the following peripheral devices: four-tape magnetic tape car-
tridge system (Model 4096, Tri-Data Corp.), high-speed paper tape reader (Mark V,
Datascan), 15-in. display oscilloscope (Model 1735D, IL.T.T.), ASR-33 Teletype
(Teletype Corp.), Type 547 laboratory oscilloscope (Tekironix), 10-bit ADC and digi-
tzl-to-analog converter (Models A811/A618, Digital Equipment Corp.), sample and

hold amphﬁ_er (A400, Digital Equipment Corp.), multlplexers a proarammable
clock, and programmable gain amplifier.

RESULTS AND DISCUSSION

From eqn. 6 it can be seen that the MA filter smooths by taking a running
average over 2 m -+ 1 data points as the convoluting interval. Further, all data points
in the smoothing interval are equally weighted and therefore the MA does not track
sharp changes in slope. Thus, the most pronounced effect will be seen as a decrease
in the peak height, especially for sharp narrow peaks. It should be noted that this
means that peak shape parameters will always be distorted by some degree, regardless
of the peak shape or symmetry. On the other hand, all symmetrical digital filters treat
data points both zhead and behind the data point of interest (p = 0), whereas analog
flters treat only the current and past data points (p < 0) and therefore introduce a
undirectional symmetric distortion and error intc the results.

Least-squares fits of polynomial filters are more versatile because both the
order of the polynomial and the number of data poiats in the convolute may be varied.
Consequently, these functions are betier fits for continuous form functions such as
chromatographic peaks and introduce Iess peak distortion than a MA with the same
size convolution interval. In terms of high-frequency filtering, the converse is true, as
was shown in Fig. 1. If very fast data acquisition rates and small convoluting intervals
are used, the polynomial filter will follow the experimental peak profile without signif-
icant deviation and effectively filter the noise which is much greater than the band-
width of the chromatographic peak. Lower-frequency noise will not be filtered as
effectively and larger convoluting integrals and/or lower order polynomials will be
required.

These efiects can be qualitatively predicted by examzmng the trends in the
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normalized convolution coefficients in Fig. 2 for quadratic-cubic polynomial smooths
and for quartic-quintic smooths in Fig. 3. These plots show that the coefficients are
symmetrical about p = 0, and that the greater the number of points in the smooth,
the greater the filtering effect will be on both the peak and the noise for a given
sampiing density. Thus a 7-point smooth will tfrack a changing sigpal with greater
fidelity than will 2 19-point smooth. However, the larger smooth will reduce the
noise level and frequency more. In compliance with the optimum filter bandwidih
criterion, larger smooths require a higher data point density {(points per peak width at
half-height) to maintain a fixed ratio of filter width to peak width than do smaller
smooths. In practice this ratio should be about 1.1 {points in smooth/data pcint den-
sity) for a quadratic—cubic smooth, and about 0.5 for a linear smooth. In the limiting
case-where the entire peak profile is included within the convolution interval, peak
distortion becomes too severe for chromaiographic use even with quartic-quintic
smooths.
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Fig. 3. Convolute coefficients for symmetrical quartic—quintic smoothing filters plotted about p =
@ as a function of p for 7-19-point convolution intervals.

Effects on peak shape

Earlier publications described and defined Gaussian and asymmetrical (Type
I, IT) chromatographic peaks®’. These peak shapes will be used to illustrate the effects
of the digital filters. It should also be noted that a large number of data points were
used to represent all peak profiles in order that the accuracy of the peak parameter
measurements not be limited by the number of data points per peak®. All of the studies-
reported here were made by computer simulation in order to measure accurately the
changes in peak parameters, i.e., the frue value of all of the peak parameters must be
known before the errors can be measured.

Peak height was chosen as the simplest peak parameter to illustrate the dif-
ference between pelynomial and MA smoothing. The relative decrease in the peak
keight for Gaussian and Type II curves is shown in Fig. 4 for single-pass quartic—
quintic polynomial and MA smooths. The asymmetrical peak shows a larger decrease
in the peak height than the Gaussian peaks in all cases. The 9-point quartic—quintic
smooth decreases the Gaussian peak height by less than 1 part in 10* and by 0.389]
for the Type II peak so that the peak height ratio is 1.004. In comparison, the 9-point
MA smooth decreases the Gaussian peak height by 1.0% and the Type I peak by
5.94 9 to give a peak height ratio of 1.05. Therefore, as predicted from the discussion
earlier in the paper, the MA smooth will always be more detrimental to retaining the
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Fig. 4. Plot of the percent of original peak height after filtering with a six{g!e smooth as a function of
the number of points in the convolute interval for quartic-quintic (QUART) and moving average
{MA) smooths. Solid and broken lines represent Gaussian (>75 data points/peak) and Type Il

(>150 data points/peak) peaks, respectively.

integrity of the peak height because of the sharp change in slope. Further, it may be
seen that large convolutes are not justifiable for doing good quantitative computer-
based chromatography because the peak height ratio (Gaussian/Type II) decreases
from 1.004 to 1.073 in going from a 9- to a 25-point quartic—quintic smooth and from
1.05 to 1.62 over the range of a 3- to a 25-point MA smooth. Since true Gaussian peaks
are rarely obtained in GC or liquid chromatographic practice, it is particularly im-
portant to realize that, as the peak asymmetry increases, the peak height losses will
increase and small convolutes with higher-order polynomial filters become the only
method of choice. Type I peaks are not shown as they represent an intermediate case
between the Gaussian and Type Il peaks.

Because the Type II peak shape is more realistic in exporimental work, the
effects of the type of filter, number of points in the convolute, and the sampling den-
sity (w,/At) are shown in Fig. 5. It is readily apparent that any digital filter applied
to a peak where the sampling deasity is too low has disasterous effects. A minimum
of 3.3 data points/e is required for accurate Gaussian peak area characterization ac-
cording to the criteria of Chesler and Cram®. By comparing 9-point convolutes for
the higher sampling density it is seen that the quartic—quintic smooth (97.4 %) is more
accurate (in terms of peak height recovery) than the quadratic—cubic (94.57,) which
is more accurate than the MA (79.3 %). However, when the same peaks, filters, and
convolutes are compared in the frequency domain, the MA is more effective than the
quadratic—cubic which is more effective than the quartic—quintic in reducing the peak-
to-peak amplitude of normal random noise. Fig. 5 also shows that to recover >80,
of the peak height at a sampling density of 3.3 points/c the following filters could be
used for a Type II peak: 7-19-point quartic—quintic, 5-13-point quadratic—cubic,
or a 3-5-point MA.
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Fig. 6 is a summary of the trends of the data in Table L. The error in the filtered
data for the zeroth moment (i, area) of the Type II peak is consistently larger than
for a Gaussian by approximately an order of magnitude, regardless of the type of
smooth or the size of the convolute interval. In terms of peak area recovery, it may
be seen that only the > 25-point filters will introduce significant errors in the peak
area. This is because of the relative weighting of the peak symmetry and the use of
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Fig. 6. Plot of the relative error after a single smooth in the zeroth moment (%, peak area), first mo-
ment (w;, retention time), second moment (x:, peak width), skew, and excess for Gaussian (solid
lines) and Type 1I (broken lines) peaks after applying quadratic—cubic (QUAD) and moving average
(MA) smooths. The peak integration limits are + 0.1% for sampling densities of >75 points/peak
for the Gaussian and >150 points/peak for the Type II peak.
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TABLE I

RELATIVE ERRORS IN CHROMATOGRAPHIC PEAK SHAPE PARAMETERS AS A FUNC-
TION OF PEAK SYMMETRY AND FILTER FUNCETION

o >y o I’ 75 Skew  Excess
(I) Gaussian peaks (>75 data
points/peak)
{a) No smooth value 1.00 0090 1.00 0.90 3.00 0.00 3.00
(b) Relative error, %
9-pt. quadratic-cubic 6-1075 — 4-10% — 3-107% — 2-10~¢
17-pt. quadratic—cubic 3-10~% — 3-107% — 2-107¢  — 1-1072
25-pt. quadratic—cubic 2-1073  — 3-1072 — 2-107t  — 2-10™1
S-pt. MA 2-10-3 — 2.0 — 39 — i-107t
9-pt. MA 1-10-3 — 6.7 —_ 14 — 2-10°t
17-pt. MA 4-1073 — 24 — 51 — 1.6
25-pt. MA 4-107 — 51 — 117 — 54
(I} Type H peaks ( > [50 data
pointsipeak)
(a) No smooth value 1.58 2.54 233 273 5.51-10° 2.42 10.1
(b) Relative error, %
9-pt. quadratic—cubic 3-107* 2-107% 2-107* 1-10~% 2-10~* 5-10~* 3-10—*
17-pt. quadratic—cubic 1-107%2 8-i0~* 1-107* 5-107% 9-10~% 2-10—* 2-1072
25-pt. quadratic—cubic 5-10"* 3-107* 2-10"' 9-10* 1-10~* 4-10-% 2-107!
S5-pt. MA 1-10—° 2-10~* 5-107! 4-10~% 2-10"? 8-10-! 8-10!
9.pt. MA 2-1073 2-107¢* L7 1-10* 8-107¢ 2.7 2.6
17-pt. MA 4-107* 2.0 6.2 5-10-t 29 9.2 8.8
25-pt. MA 2-107t 1.5 13 4-107* 74 i8 17

symmetrical filter functions. For all filters with smaller convolutes, the accuracy of
peak area recovery will be limited by the errors associated with sensing peak start and
end rather than by the filier. Therefore peak area will always be the least sensitive peak
parameter to distortion by digital filters. In all cases, the error in measuring a filtered
peak area will increase as the peak asymmetry increases.

The effect of quadratic—cubic and MA smooths on the first moment (u,, center
of gravity) are negligible for a2 Gaussian peak. The errors in #; increase markedly
as the convoluting integral is made larger for a fixed data set. However, even a2 25-
point quadratic—cubic smooth will only shift the retention time by 0.5 sec for a peak
eluting in 30 min while the same peak at the same retention time will increase by 36
sec if a 25-point MA smooth is used.

The error in the second moment (i, variance) was discussed earlier in the
paper for Gaussian peaks and the resultant is that the Type II peak will give smaller
errors than the Gaussian for an MA smooth. The magnitude of the peak width error
for the Gaussian may be derived from egn. 11. The errors in %, in a Type II peak
are larger than those for a Gaussian peak using a polynomial smoothing function,
although most reasonably sized filters will have a negligible effect. This is important
in that the resolution and efficiency of the column are not degraded by the filter func-
tion. However, a 9-point MA filter could result in an apparent decrease in column
resolution from 1.0 to 0.94 for a Gaussian peak.
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The relative error introduced in skew of a Gaussian peak is negligible because
the skew is zero by definition. Therefore only the results for the Type II peak are
shown in Fig. 6. Skew (and excess) are seen to be particularily sensitive to digital
filtering. This is caused by the weighting of the tail of the peak in the calculation of u;
and the high sensitivity to even minor changes in the profile of the tail. Thus the resulis
are predictable: polynomial smooths will always introduce smaller errors than a
MA, and the higher the order of the polvnomial and ihe smaller the convoluting inter-
val, the smaller the peak symmetry distortion.

There is no effect of peak symmetry after smoothing with a polynomial on
the excess, which indicates that the relative error introduced in the peak flatness and
the increase in peak variance are of the same magnitude. This is not true for a MA
smocth because of the effect of equally weighting data points ahead and behind the
data point of interest (p = 0) with asymmetric peaks. Therefore the effect is to flatten
the peak more than to broaden it. In other words, the fourth moment (z,) is extremely
sensitive to shifts in the distribution of the peak area away from the center of gravity.
The large errors for the skew and excess, shown in Fig. 6, indicate that meaningful
measurements will only be made for these parameters by using low-noise chromato-
graphic systems and peaks with a large signal-to-noise ratio.

The effects of multiple smooths were described earlier as increasing the filter
function by the &th power for & consecutive smooths, and decreasing the frequency
bandwidth. The effects of ten consecutive smooths are shown in Fig. 7 to show the accu-
racy of polynomial smooths for all reasonable chromatographic peak shapes and
another reason for avoiding MA smoothing. The compounded errors in the Gaussian
peak heights are: 0.37 % for the quadratic—cubic, << 10?9/ for the guartic—quintic,

4

Peak height «

;-_;A. ,,-,--:.:, 3 , = A‘:: Sty

Fig. 7. Plot of the percent of original peak height after ten consecutive smooths as a function of the
number of points in the convolute interval for quadratic-cubic (QD), quintic—quartic {(QT), and mov-
ing average (IMA) smooths. Solid and broken lines represent Gaussian (>85 data points/peak) and
Type I (=210 data poinis/peak) peaks, respectively.
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Fig. 8. Simulated 6-component chromatogram shown without smoothing. Peak No. 1 is normalized
to 10024 of full scale. Peak sampling densities are given in Table II.

22.7% for the 9-point MA, and 8.759; for the 5-point MA. The corresponding errors
for the Type Ii peak are: 7.76, 1.25, 49.6, and 29.7 9, respectively.

Figs. 8-14 are simulated chromatograms to show graphicalily the effects of
applying different digital filters. The 6-component chromatograms are simuliated to
Hllustrate the effects on a sharp narrow peak (No. 1), a sharp peak with an unresolved
shoulder (Nos. 2 and 3), a pair of overlapping peaks (Nos. 4 and 5), and a broad,
skewed peak (No. 6). Fig. 8 shows the original, unsmoothed chromatogram, normal-
ized to the peak height of peak No. 1. Table II describes the sampling density for the

TABLE I

PEAK HEIGHTS OF THE SIMULATED CHROMATOGRAM (FIG. 8) MEASURED AFTER
DIGITAL FILTERING™

Peak height (%)

Peak No.I Peak No.6

No smoothing 100 160
3-pt. MA 72 94
5-pt. MA 48 S0
9-pt. MA 28 79

17-pt. MA 15 56
5-pt. quadratic—cubic 86 g6
9-pt. quadratic—cubic 57 54

17-pt. quadratic—cubic 32 84

25-pt. guadratic—cubic 22 70
9.-pt. quartic—quintic 80 97

17-pt. quartic—quintic 48 95

25-pt. quartic—quintic 34 86

* Sampling density for the simulated chromatogram (data points/s): Peak Neo. 1 = 1.0; Ne.
2=125;No.3 =143; No.4 =20; No.5 = 2.22; No. 6 = 3.33.
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Fig. 9. Simulated 6-component chromatogram after smoothing with a 3-point MA. Scaling factors
same «s in Fig. 8.

peaks and the attenuation factors for the sharp narrow peak with a typical but in-
sufficient sampling density (No. 1) and the broad peak with an acceptable sampling
density (No. 6). Note that in the chromatogram in Fig. 8, the shoulder on pezk No. 2
is not discernable in that no peak broadening is apparent, and that the valley between
peaks Nos. 4 and 5 is about 259 of the peak height of peak No. 5.

Using the same scaling factors for display as in Fig. 8, the resulis of 3- and 9-
point MA smooths are shown in Figs. 9 and 10. The peak height recoveries, normal-
ized to those in Fig. 8, are reported in Table II. More importantly,note that the 3-point
MA has not seriously perturbed the peak shape, resolution, peak tail, or baseline com-
pared with Fig. 8, even though the sampling density is too low on all of the peaks.
However, Fig. 10 shows the striking contrast between a 3- and 9-point MA, where
the differences are accentuated by the low sampling density. In Fig. 10, peak No. 3
serves to broaden and skew peak No. 2 and peaks Nos. 4 and 5 have been fused by
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Fig. 10. Simulated 6-component chromatogram after smoothing with a 9-point MA. Seaiing factors
same as in Fig. 8.
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the filter. Similar comparisons may be made between Figs. 1! and 12 for the 9- and
17-point quadratic—cubic and Figs. 13 and 14 for the quartic—guintic smooth of the
same convolute intervals. The striking distinction between the 17-point polynomial
smooths in Figs. 12 and 14 is the resolution between pezks Nos. 3 and 4 which il-
lustraies the power of the higher-order polynomials as previously discussed. The
“ringing” on the leading and tziling edges of the peaks is a consegquence of the con-
voluting coefficients for higher-order polynomials where the sampling density is too
iow. The extreme case is where the convoluting interval is larger than the number of
data points in the peak. In this case “ringing” and peak area “amplification™ will
result as shown in Fig. 12.
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Fig. 11. Simulated 6-component chromatogram after smoothing with a 9-point guadratic-cubic.
Scaling factors same as in Fig. 8.
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Fig. 12. Simuiated G6-component chromatogram afier smoothing with a 17-point quadratic-cubic.
Scaling factors same as in Fig. 8.
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Fig. 13. Simulated 6-component chromatogram after smoothing with a 9-point quartic-quintic.
Scaling factors same as in Fig. 8.
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Fig. 14. Simulated 6<omponent chromatogram after smoothing with a 17-point quartic—quintic.
Scaling factors same as in Fig. 8.
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Effects on noise

The objective of this paper is to treat the effects of digital filters on chromato-
graphic peaks and peak shape parameters. In addition to peak or signal considerations,
we will briefly illustrate the effects on noise, although these effects are well known and
have been treated comprehensively elsewhere®>. To quantitate the noise attenua-
tion, we have defined a “filter factor”, @, by

Oy — G
Gy

D = 1z
where o, 15 the standard deviation of the normal random noise and o, is the standard
deviation of the noise after smoothing. Thus for @ = & there is no smoothing affect
because ¢, = o, and @ = 1 represents complete smoothing such that the noise is
below the detection limit (6, = 0). Figs. 15-17 illustrate the reduction of the normal
random baseline noise before and after filtering for the S-point MA, guadratic-cubic,
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Fig. 15. Simulated normal random noise on a chromatographic baseline. Left-hand side is original
noise trace normalized to 2/3 of full scale. Right-hand side is the same trace, displayed after smooth-
ing with a 9-point MA.
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Fig. 16. Simulated normal random noise on a chromatographic baseline. Left-hand side is original
noise trace normalized to 2/3 of full scale. Righi-hand side is the same trace, displayed after smooth-
ing with 9-point guadratic-cubic.
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Fig. 17. Simulated norma! random noise on a chromatograpmc baseline. Left-hang side is original
noise trace normalized to 2/3 of full scale. nght-hand side is the same trace, displaved after smooth-
ing with a 9-point auartxc-qmntxc-
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ard quartic-quintic smooths, respectively. The lefi-hand side of the baseline segment
is the unfiltered noise display, normalized to two-thirds of full scale for display, and
the right-hand side of the trace is the same baseline segment after filtering. The filter
factors are given in Table I11. Where the filter factor is !arge, the lower-frequency noise
components may be observed (e.g., Fig. 15) which is often referred to as “wancer”™
in the chromatographic literature.

TABLE III
ATTENUATION OF NORMAL RANDOM NOISE
Filter function Filter factor

9-pt. MA 0.702

9-pt. quadratic—cubic  0.553
9-pt. quartic—quintic 0.387
25-pt. MA 0.825
25-pt. quadratic—cubic  0.733
25-pt. quartic—quintic 0.667

Fig. 18 compares the MA and polynomial filters treated in this paper in terms
of the filter factor for each type as a function of the number of points in the con-
volute. Thus, a 5-point MA filter will reduce normal random noise with the same filter
factor as an 11-point quadratic-cubic and a 17-point quartic—quintic smooth. As the
number of points in the convolute increases, the filter factor becomes less affected
by the type or order of the smooth. For the smaller, more commonly used convolute
intervals, Fig. 18 shows that the filter factor may range from 0.25 for 2 7-point quartic-
quintic filter to 0.65 for a 7-point MA. Note that the filter factor changes fastest in
this range of convolutes.
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Fig. 18. Response of the filter factor for nermal random noise as a function of the number of points
in a convolute interval for moving average (MA), quadratic-cubic {(Q/C), and quartic-guintic (Q/Q)
smoothing functions.
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~ Fig. 12 shows the cutoff filter frequencies for 5-, 17-, and 19-pcmt quadratic—
cubic filters in terms of their effectiveness {(@). The smaller the convolute interval, the
higher the bandpass of the filter for a given polynomial order and this is in agreement

with the thaarv Far tha ranaa chawn in Fia, 12 the midooint of the freauency cntoff
VEILEE WwXitw muvz; WL Wil L‘b“ W JEIATS FT LE LK L Z S, il ux.x.u WFLLLW L LIl Ll&\iuvu‘l) WLLELAIEE

ranges from 20 to 70 Hz which is nof a large range. Therefore principal considera-~
tion shorld be given to choosing a filter on the basis of the peak parameter to be mea-
sured and the amplitude of the noise. This is the experimental verification analogous
to the theoretical curves shown in Fig. I, which emphasizes the fact that a digital
filter may be “tuned” to a cutoff frequency by design if the noise has been charac-
terized and the filter factor is kncwn as a function of the frequency, the number of
points in the convolute interval, and the order of the polynomial.
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Fig. 19. Frequency response of 5-, 9- and 17-point quadratic—cubic digital filters for normal random
noise as measured by the filter factor.

From Figs. 8-15 it can be seen that S/N may be significantly improved to
decrease detection limits. At the same time, it is pointed out that peak area, reiention
time, resolution, and all other peak parameters for real chromatographic peaks are
not conserved. It has been shown that all kinds of digital filters may be used to en-
hance S/N and that the error level is dependent upon: (1) number of data points/s;
(2) band width of the peak; (3) amplitude of the noise; (4) frequency distribution of
the noise; (5) peak shape parameter to be measured; (6) S/N; and (7) accuracy desired.

IMPLEMENTATION IN PRACTICE

The Varian CDS-111 and CDS-101 (Varian Instrument Division) are new,
dedicated, small chromatography data systems which serve as examples of the prac-
tical considerations and trade-offs in designing and implementing digital filters. The
following basic objectives governed the design of the filter aigorithm in order to
make the system as generally applicable, accurate, precise, and reliable as possible
within the constraints of a microprocessor-based system. The filter must:
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(1) Reduce medium- and low-frequency noise from the column and detector.
This noise is close to the frequency of the peak: F i:c = 3 Fioeak. High-frequency noise
is attenuated by a two-pole analog filier and an integrating ADC (attenuatlon of 50-
or 60-Hz power line noise and harmonics).

(2) Conserve peak area, and limit the distortion of peak height and width.
The peak area measurements must not be adversely affected by the digital filter (i.e.,
no side lobes or generation of false peaks, no dlstortxor of peak shapes io afiect area
measurement on fused peaks).

(3) Calculate the first derivative of the detector signal (slope) for use in peak
detection (peak—baseline discrimination). Reduce the slope noise due to the “fre-
quency gain” characteristic of the differentiationi process. The siope values must be
reliable (accurate, precise, and continuous over the full domain of values) so that the
peak detection programs do not have to confain the more complex noise—peak—base-
line discrimination routines. Slope values for narrow peaks must cover a wide range
while slope values for wide peaks must have high resolution.

(4)-Operate with an existing ADC produciag 20 conversions per second with
a resolution of 1 uV at the most sensitive range, and autoranging to 4, 32 and 256
pV at higher voltage levels. Total dynamic range is 10%. The ADC translates a smooth-
ly changing signal into a stair-step progression of digital values. With slowly changing
signals (i.e., baseline), the ADC values remain constant until the signal moves into the
next digital value. This preduces a spike or pulse in the first derivative, which should
be suppressed to the extent of not affecting the peak detection programs. This effect
is not present when the noise level of the signal equals or exceeds the resolution of
the ADC.

(5) Be self-adapting to changes in peak frequency, specifically to self-update
filtering when peak widths ingrease. Also te adjust simultaneously the peak detection
threshold level (the slope) to take advantage of the reduction of noise due to the filter-
ing increase. Fixed-frequency filters are not suitable to isotherma! or isocratic chro-
matographic separations owing to the iacrease in peak widths. The filter should not
self-adjust when peak widths remain constant as in temperature or gradient pro-
grammed separations. The operator should be able to change the filter for different
peak widths at will. ' ’

(6) Be implemented in an 8-bit, binary microcomputer having an average
instruction execution time of 30 gsec, and operate at the ADC speed (20 data points
per second).

The digital fiiter include: Tour software elements: a variable pre-integration
step to provide the v::riable frequency response characteristic (also known as data
bunching); a 4-point symmetrical MA to suppress momentary signal curvature due
to noise, but not suppress the trend of the siope caused by a real peak; a 5-point gqua-
dratic least-squares estimate of the first derivative; and an algorithm for the self-
adjusting portion of the filter.

The pre-integration step is disabled at the minimum peak width setting,
leaving only the M A and first derivative calculation in operation. At wider peak widths,
data points are summed in groups of 2, 4, 8... up to 256. This causes two effects:
first, the time interval between the 4 data points in the MA and the 5 dzia poinis in
the slope calculation is increased. The time interval changes from 1/20 sec: with no
pre-integration o 1/10 sec with 2 points summed. and so on. This spreading effect
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produces a reduction in noise by /2 for each doubling of the number of data points
summed. The second effect is the reduction of noise produced by theintegration process
itself. This also produces noise reduction of 4/2. and thus the combined noise reduc-
tion is (/2)* or 2. The dynamic range of the filier frequency is 256:1 using this tech-
nique. €

The MA smooth was selected because of its high efficiency in suppressing curva-
ture (change in slope) of the data points contained within the M. Because of its poten-
tial for severe shape distortion, a smail MA was selected. This allows efficient piece-wise
smoothing of the peak profile while still maintaining the peak shape. A 4-point average
was selected instead of the more usual 3- or S-point averages because of an area inte-
gration consideration. The 4-point average only includes 209/ of the peak width at
half-height at any time (20 datz points per peak width at haif-height are used, or 8
data points/s), which minimizes the peak shzape distoriion. The 4-point average pro-
duces a smoothed value at the midpoint of the average where in fact no data point
exists. This 2-data point offsst is used by the area integration routine to kelp compen-
sate for the fact that valley points are located % data pcirt iate on the average. This
improves the accuracy of peak area measurement on fused peaks if the results of
replicate analyses are averaged.

The 5-point slope calculetion uses the convolution technique. Here the least-
square; estimate is calculated based on the data points after going through pre-
integration and the MA. O=e effect of pre-integration is scaling of the first derivative
values. As the number of points in the pre-integration siep increases, the slope values
incraase as the square of the increase. This is due in part to the design of the filtering
program because all normalization factors are grouped together at one operation.
However, the scaling of the slope is reduced to a linear relationship of the number of
points in the pre-integration step, and this produces the exact increase in peak
detection sensitivity thai can be made owing to the decrease in noise produced by the
change in the number of points used in the pre-integration step.

Finally the filter is self-adapting by responding to the peak width of the current-
iy cluting chromatographic peaks. When a peak is 50 9, wider than the expected peak
width, the filter doubles the number of points in the pre-integration step. The change
takes place only at valley points or on the baseline following the peak. To reduce the
effect of peak tailing the time from peak start to the peak maximum is used as the
measure of peak wiath. The filisr can also accept changes specified by the operator to
occur at specific points in the chromatogram.

The oversll performance of this digital filter produced no measurable change
in peak area measurements, and only depressed a Gaussian peak amplitude by 0.4 9.
It adjusts itself for variable-width peaks and simultaneously increases the peak de-
tection sensitivity. The noise characteristics of the ADC are easily handled by the filter.
The S§lter algorithm has an execution spzed of about 20 msec per slope calculation in
the microcompuier system, which allows enough iime for execution of the real time

peak detection program.
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