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SUMMARY 

Digital filters are quantititively evaluated for their effects on chromatographic 
digital d&z. Changes in peak-shape parameters for Gaussian and asymmetrical 
chromatographic peaks are described by the error levels introduced. Reductions in 
baseline noise are discussed in terms of reducing the amplitude and the frequency 
response. An example of the practical considerations and trade-of% in implementing 
digital filters in a microprocessor-based data system is presented, so as to minimize 
peak distortion, and enhance peak detection and signal-to-noise ratio. 

INTRODUCTION 

Numeric& data-handling tedmiques are extensively applied in chromato- 
graphic data systems today to enhance eEectively the information content, signal- 
to-noise ratio (S/N), accuracy, and precision of analytical signals. Many of these ad- 
vanced techniques have bezn reviewed by An&o’ and Hieftjez*3. However, minimal 
attention has been given to the quantitative aspects of digital filters since the publi- 
c&ion of the Iandmsrk paper in the analyticA iiterkure by Savitzky and Golay’ in 
1964. Their paper treated numerical smoothing and differentiation by Ieast-squares 
procedures and presented tables of convoluting integers and their normalizing factors. 
These tables were later corrected5, but the effects of the filters and interpretation for 
their application to chromatographic systems has not been reported. Digital filters 
are usuaEIy applied as part of the signal-processing algorithms of incoming signals 
to digit@ data systems and are therefore critical in terms of subsequent data pro- 
cessing and interpretation programs. They are rareIy en opek3tor-controkd param- 

* To~wiom correspondexe should be address. 
** hesenf 2dd~s.s: AnaIyfitaE Chemistry Divisioc, National Burem of Sfmdards, Washington. 

DC. 20234, us-A_ 
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eter in chromatography data systems and therefore it is even more important that 
their effects, potential power, and limitations be understood. 

Noise in its various forms is a random error that directly afEcts the precision 
and useable range of analytical measurements. Thus it is desirable to remove as much 
noise as possible without distortion of the signal beyond acceptable limits. Several 
analog and digital filtering techniques 21-e available. 

Passive analog Hters (LRC types) have the advantage of iow cost and sim- 
plicity of design and construction. However, they are (2) limited in most cases to real- 
time signals, (2) cannot produce derivatives of the input signal (ahhough other analog 
techniques are available for doing so), (3) must be voltage and impedance matched 
to the signal source, (4) show variations from one unit to the next owing to com- 
ponent tolerances, and (5) do not lend themselves to systems requiring dynamic 
changes in fihering characteristics. Active analog filters have the same basic charac- 
teristics as passive filters, except that the filtering characteristics can be varied over 
limited ranges and lower frequencies are more easily filtered. These filters can add 
amplifier noise to the signal and are complex and expensive to implement. These types 
of filters are commercially avaiiable today for chromatography systems. 

Digital filters Are numerical counterparts to analog filters. Hard-wired digital 
filters (1) can implement sophisticated algorithms, such as Fast Fourier Transforms, 
(2) are very fast, (3) can operate on either real-time or data stored in memory, and (4) 
can produce derivatives of the input signal. These types of filters are costly, may be 
complex to design into a system, have limited adaptability, and require accurate digi- 
tization. 

Software-based digital filters take advantage of the logical and arithmetic 
capabilities of digital computers and may be adaptive. They (I) are the most versatile 
in that very sophisticated filters and numerical techniques can be designed, (2) may 
be changed in real-time and optimized for the S/JV and frequency response desired, 
(3) are simple to implement and use, and (4) allow the versatibility of post analysis 
recalculations. Hard-wired analog and digital filters must be replicated for each input 
channel to be filtered, whereas any number of different software filters (from 1 to n) 
can be applied to m channels of incoming signals. 

It should be pointed out that, in addition to analog and digital filters, other 
techniques may also be used for noise reduction or S/N enhancement. These tech- 
niques include integration (analog and numerical), modulation, digitization, data 
bunching, correlation, synchronous detection, muitiple pass filters, and averaging. In 
all cases, these techniques should be characterized in terms of their gain in S/N, fre- 
quency response, and effects on precision, resolution, and accuracy @e., reduction in 
systematic error). As an example, it is imperative that the data-bunching rate in chro- 
mato,graphy data systems and&tegrators be set or selectable in terms of the frequency 
of response (peak width) rather t&n by the number of da’@ points. The effects of 
chromatographic noise have been treated in terms of their elect on the precision and 
accuracy of statistical moment&, digitization errors7*s, 
detection limitslo, 

retention time measurements9, 
and the design of chromato,mphy data systems to handle sensitive 

peak detection and spike trapping’l. 
This paper follows directly from the one by Savitzky and Golayi, which is 

recommended as an introduction to the subject. Therefore, we will treat only moving 
average (MA) and polynomial smoothing functions as digital filters here in detail. 



Digital Bters basically serve to attenuate random-noise and/or to differentiate 
the signal. The filters discussed are of the symmetric, non-recursive, linear type 
which operate only on the input signal. One requirement of these filters is that the 
digitized data must be in fixed time- increments in order to be smoothed with the 
Savitzky-Golay convolutes e_ Secondly, data to be filtered will be assumed to be a 
continuous_function such as chromatographic peaks, as either resolved or unresolved 
elution profiles. High-frequency spikes are “trapped” by such filters and are thus re- 
duced in amplitude. Repetitive spiking at high frequencies may introduce a systematic 
error in the data, but this is assumed to be a minimal effect in stable, &an chromato- 
graphic systems and therefore is not considered in this work. Thirdly, polynomial 
smoothing requires that an odd number of data points be fit. 

Polynomial smoothing functions will be given by 
+m 

y’“’ = ,r 
P 

,#n) 
Pi Yi (1) 

I=-.* 

where 
YC”’ = 

L 

amplitude of the smoothed value 

= position of smoothed value within convolution interval. p = 0 
(midpoint) for symmetrica filters 

n = order of the smoothing formula 
2 m + I = number of data points in the smooth 
w’?’ = P: convolute coefficient of theith data point for smoothing operations 

YL = amplitude of the ith data point before smoothing 

such that 
im 
z iv’? = 1 PL (2) 

i=--n 
and 

TV2 = Wyl’,,(_i, (3) 

it should be. noted for later reference that if n is even, e.g., it = 2 4, then 
*o’zp’ = ,$@zir) 

PZ Pi (4) 

which says that the formula obtained for finding the smoothed value at the midpoint 
of the interval (p = 0) by using an even-degree polynomial is the same as that ob- 
tained with the next higher odd-degree polynomial. 

For the special case where n = i, as for linear smoothing formulas, 

wg = 1 
2mfl 

it can be seen that 

(5) 

which is the MA digital filter. 
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In chromatography, the error signal or noise may be considered as random at 
high frequencies whereas the errors at low frequency are more systematic as they ap- 
proach the bandwidth of the elution profile. Therefore, it would be desirable to de- 
sign a lowpass filter for error signals at frequencies higher than that of the signal to 
be observed. From eqn. I it may be shown that the results of a polynomial smoothing 
function may be expressed as a function of the frequency, o, in terms of a filter func- 
tion, given by 

f(@) = W* +- 2 _E IY~-cos icS4t (7) 
i=l 

where 

jT(jco) = f(jCJ) - y@Yo) (8) 

and y(jo) and rb ) ‘a are the La&ace transforms of y(it) and Y(r), respectively. 
This may be illustrated by considering a 7-point linear smooth which is given 

by eqn. 5 as 

so that the filter function will be 

+2coso4tf2cos2w4t+2cos3o4t) (IO) 

which is illustrated in Fig. la. It can be seen that for the frequencies where f(j~) = I, 
the originaI data will be passed by the smoothing function without change. For 
frequencies where f&J) < f- 1, the original data will be attenuated by the smoothing 
function. In the case off(@) < 0, the filter function is given by 1 f(+) 1. The negative 
values relate only to phase shifts in the data. 

When data points are sampled at data rate intervals of dt, data components 
and noise with frequencies of greater thzm lj4t will not be completely filtered in the 
smoothed data. This effect can be predicted from Fig. I by the cyclic nature of the 
filter function, as well as the attenuation factor as a function of frequency. Although 
this smoothing function is a good Iowpass filter, different titer functions may be 
applied as shown in Fig. 1. The ?-point second-order smooth will follow the true 
peak shape more closely than a linear smooth and therefore distort the peak shape 
pameters less. However, it czn be seen from Fig. lb that 2 second-order filter func- 
tion will be less effective for high frequencies than one of a lower order when (2 m+- 1) 
is a constant. 

When it is desired to remove the higher-frequency noise components in order 
to enhance the analytical signal information content, or to deveIop a filter with a lower 
bandpass, or one with Iess cyclic character, a number of alternatives are available; 
all of which may be predicted from their filter function: (1) The data may be pre- 
filtered wi-& norched analog cutoff filters, as previously discussed. (2) The sampling 
time interval, dt, may be increased so that higher frequencies fail in the region where 
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Fig. 1_ FiItcr functions as a function of frequency for (2) a 7-point lkar smooth, (h) a 7-point second- 
order smooth, (c) two passes with a 7-point linear smooth, and (d) a tnmcated Fourier series. 

odt > +z so that they will be cut off by the analog-to-digitaI converter (ADC) and 
further at tenuated by thedigital fiIter. (3) Increase m so as to lower the bandpass of the 
polynomial Hter function. (4) Use a multipass filter as shown in Fig. 7c, where the 
filter function of k smooths is [f(iw)Jk. (5) Use oper;itors other than polynomials, as 
shown in Fig. 7d for a Fourier series. Such functions may be tailored to the function- 
ality of the response curve when it is well deiined. All of these filters are extremely 
versatile, precise, and are well defined when implemented in software. Further it is 
then possible to update the weighting coefficients on the basis of the incoming signal 
if it is time dependent, as in the case of chromatography. The results and discussion 
presented in this work will treat the effects of sampling times, order cf the polynomial, 
and nultipass Bfers (Nos. 24 above). Only polynomial and moving average filters 
will be discussed because they are easier to implement in small data systems and will 
be shown to be more than adequate for most chromatographic applications when 
properly applied. 

Opfinzizfztimz qf tkj?ifer band width 
Van Rijswick” has shown that optimum detection of a Gaussian peak for a 

filter band width that maximizes the signal-to-noise ratio after filtering, (S/N)r, 
is given by 

S 
H N, 

uu 
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where A is the peak area, oY the mean amplitude of the normal random noise before 
Btering, wp is the Gaussian peak width. dt is the sampling interval, (note that ~Jdt 
is the sampling density), and K = w&, or the ratio of the filter width to the Gaussian 
peak width. It should be noted that filtering will increase the peak width to (rv,’ + rut’)* 
or (1 j Kz)+. K will thus reach an optimum at K = 2.24 so that for optimum peak de- 
tection, the width of the *matched filter should be proportional to the width of the 
chromatographic peak. Although detection limits are not discussed in the results sec- 
tion of this paper, it is important to point out that digital filters may enhance or reduce 
the detection limits of any cbromatograpbic detector, affect the area recovery and 
peak width, and must be applied in relationship to the sampling frequency. 

EXPERIMENTAL 

All of the computer programs for calculations and simulation were run on a 
PDP-8/L laboratory computer system with 8 K of core (Digital Equipment Co_rp.). 
The system includes the following peripheral devices: four-tape magnetic tape car- 
tridge system (Model 4096, Tri-Dam Carp,), high-speed paper tape reader (Mark V, 
Datascan), 15in. display oscilloscope (Model 1735D, I.T.T.), ASR-33 Teletype 
(Teletype Corp.), Type 547 laboratory oscilloscope (Te’ktronix), IO-bit ADC and digi- 
til-to-analog converter (Models A81 l/A618, Digital Equipment Corp.), sample and 
hold amplifier (A4G0, Digital Equipment Corp.), multiplexem, 
clock, and programmable gain amplifier. 

a pro,%mmable 

RESULTS AND DISCUSSION 

From eqn. 6 it can be seen that the MA filter smooths by taking a running 
average over 2 m + 1 data points as the convoluting interval. Further, all data points 
in the smoothing interval are equally weighted and therefore the MA does not track 
sharp changes in slope. Thus, the most pronounced effect will be seen 2s a decrease 
in the peak height, especially for sharp narrow peaks. It should be noted that this 
means that peak shape parameters will aiways he distorted by some degree, regardless 
of the peak shape or symmetry. On the other hand, all symmetrical digital filters treat 
data points both ahead and behind the data point of interest (p = 0), whereas anaiog 
rTlters treat only the current and past data points (p I 0) and therefore introduce a 
undirectional symmetric distortion and error intc the results. 

Least-squares fits of polynomial filters are more versatile because both the 
order of the polynomial and the number of date points iu the convolute may be varied. 
Consequently, these functions are better fits for continuous form functions such as 
chromatographic peaks and introduce less peak distortion than a MA with the same 
size convolution interval. In terms of high-frequency filtering, the converse is true, as 
was shown in Fig. 1. If very fast data acquisition rates and small convoluting intervals 
are used, the polynomial filter will follow the experimental peak profile without siguif- 
icant deviation and effectively filter the noise which is much greater than the band- 
wid’rh of the chromatographic peak. Lower-frequency noise will not be filtered as 
ef%ztively and larger convoluting integrals and/or lower order polynomials will be 
required. 

These ef;ects can be qualitztively predicted by examining the trends in the 



normal&3 convolution coe&ients in Fig. 2 for quadratic-cubic polynomial smooths 
and for quartic-quintic smooths in Fig. 3. These pEots show that the coefficients are 
symmetrical aboutp = 0, and that the greater the nudx~ of points in the smooth, 
the greater the~filtering effect will be OQ both the peak and the noise for a given 
sampling density. Thus a 7-point smooth will track a changing signal with greater 
fidelity than will a 19-point smooth_ However, the larger smooth will reduce the 
noise level and frequency more. En compliance with the optimum filter bandwidth 
criterion, larger smooths require a higher data point density (points per peak width at 
half-height) to maintain a fixed ratio of filter width to peak width than do smaller 
smooths. In practice this ratio should be about 1.1 (points in smooth/data point den- 
sity) for a quadratic+ubic smooth, and about 0.5 for a linear smooth. In the IimitZng 
case- where the entire peak profile is included within the convolution interval, peak 
distortion becomes too severe for chromatographic use even with quartic-quintic 
smooths. 
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Fig. 2. Convo!ute co&icients for symmetricsl quadratic-cubic smoothing filters plotted about p = 
0 25 a function ofp for 5-19-point convolution intervals. 
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Fig. 3. Convolute coefiicients for symmetrical quztrtic-quintic smoothing filters plotted about p = 
0 as 2 function of p for 749-point convolution interv2Is. 

1 

Eflects on peak shape 
Earlier publications described and detied Gaussian and asymmetrical (Type 

I, II) chromatographic peaks6*‘. These peak shapes will be used to illustrate the ef&cts 
of the digital filters. It should also be noted that a large number of data points were 
used to represent all peak profiles in order that the accuracy of the peak parameter 
measurements not be Iimited by the number of data points per peak6. Ali of the studies 
reported here were made by computer simulation in order to measure accurately the 
changes in peak parameters, Le., the true value of all of the peak parameters must be 
known before the errors can be measured. 

Peak height was chosen as the simplest peak parameter to illustrate the dif- 
ference between polynomial and MA smoothing. The relative decrease in the peak 
height for Gaussian and Type II curves is shown in Fig. 4 for single-pass quartic- 
quintic polynomial and MA smooths. The asymmetrical peak shows a larger decrease 
in the peak height than the Gaussian peaks in all cases. The g-point quartic-quintic 
smooth decreases the Gaussian peak height by less than 1 part in lo4 and by 0.38% 
for the Type II peak so that the peak height ratio is 1 .OU4. In comparison, the !?-point 
MA smooth decreases the Gaussian peak height by 1.0% and the Type II peak by 
4.94 % to give a peak height ratio of 1.05. Therefore, as predicted from the discussion 
earlier in the paper, the MA smooth will always be more detrimental to retaining the 
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Fig. 4. Plot of the percent of original peak height after filtering with a si&e smooth as a function of 
the number of points in the convolute interval for quartic-quintic (QUART) and moving average 
(MA) smooths. Solid and broken lines represent Gaussian (a75 data points/peak) and Type Ii 
(> 150 data points/ps.%k) peaks, respectively. 

integrity of the peak height because of the sharp change in slope. Further, it may be 
seen that large convolutes are not justifiable for doing good quantitative computer- 

based chromatography because the peak height ratio (Gaussian/Type II) decreases 
from 1 .ClO4 to 1.073 in going from a 9- to a 25-point quartic-quintic smooth and from 
1.05 to 1.62 over the range of a 5- to a 25-point MA smooth. Since true Gaussian peaks 
are rarely obtained in GC or liquid chromatographic practice, it is particularly im- 
Dortant to realize that, as the peak asymmetry increases, the peak height losses will 
increase and small convolutes with higher-order polynomial filters become the only 
method of choice. Type I peaks are not shown as they represent an intermediate case 
between the Gaussian and Type II peaks. 

Because the Type II peak shape is more realistic in expciimental work, the 
effects of the type of filter, number of points in the convolute, and the sampling den- 
sity (ru.Jdt) are shown in Fig_ 5. It is readily apparent that any digital filter applied 
to a peak where the sampling deasity is too low has disasterous effects. A minimum 
of 3.3 data points/a is required for accurate Gaussian peak area characterization ac- 
cording to the criteria of Chesler and Cram6. By comparing 9:point convolutes for 
the higher sampling density it is seen that the quartic-quintic smooth (97.4 %) is more 
accurate (in terms of peak height recoveryj than the quadratic-cubic (94.5 %) which 
is more accurate than the MA (79.3 %)_ However, when the same peaks, filters, and 
convolutes are compared in the frequency domain, the MA is more effective than the 
quadratic-cubic which is more effective than the quartic-quintic in reducing the peak- 
to-peak amplitude of normal razzdom noise. Fr,. -u 5 also shows that to recover >,!30% 
of the peak height at a sampling density of 3.3 points/c the following filters could be 
used for a Type II peak: 7-19-point qua&c*uintic, 5-13-point quadratic-cubic, 
or a 3-5-point MA. 
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Fig. 5. PIot of the percent of originai peak height of a Type II peak &er iiitering with a single smooth 
as a function of the number of points in the convolute interval for quart&q&tic (QUART), qua- 
dratic-cubic (QUAD), and moving average (MA) smooths. Solid lines represent a sampling density 
of 1 data point/G and broken lines are 3.3 point#x 

Fig. 6 is a summary of the trends of the data in Table I. The error in the filtered 
data for the zeroth moment (zlO, area) of the Type II peak is consistently larger than 
for a Gaussian by approximately an order of magnitude, regardless of the type of 
smooth or the size of the convolute interval. In terms of peak area recovery, it may 
be seen that only the > 25-point filters will introduce significant errors in the peak 
area. This is because of the relative weighting of the peak symmetry and the use of 

Fig. 6. Plot of the relative error after a single smooth in the zeroth moment (Q, pezk area), first mo- 
ment (ul, retention time), second moment (u2, peak width), skew, and excess for Gaussian (solid 
lines) and Type II (broken lines) peaks after applying quadratic-cubic (QUAD) and moving average 
(MA) smooths. The peak int,mtion limits are 5 0.1 oA for sampling densities of 275 points/peak 
for the Gaussian and > 150 points/peak for the Type II peak_ 



EFFECTS OF DIGITAJL FILTERS 289 

TABLE I 

RELATIVE ERRORS IN CHROMATOGRAPHIC PEAK SHAPE PARAMETERS AS A FUNC- 
TION OF PEAK SYMMETRY AND FKL-FER FUNCZ’ION 

ma h & & 14 Skew Excess 

(I) Gaussian peaks ( > 75 data 
points/peak) 
(a) No snooth v&e 

(b) ReIative error, % 
9-pt quadratic-cubic 
17-pt. quadraticcubic 
25pt. quadratic-cubic 

5-p;. MA 
9-pt. MA 

17-pt. MA 
2%pt. MA 

(Ir) Type II peaks (> 150 data 
poiizts/peak) 
(a) No smooth value 

(b) Relative error, % 
9-pt. quadl-atic-cubic 

17-pt. quadratic-cubic 
25pt. quadratic-cubic 

5-pt. MA 
9-pt. MA 

I7-pt. MA 
25pt. MA 

1.00 0.00 1.m 0.00 3.00 

6-1O-s - 4-lo+ - 3-lo-’ 
g-10-4 - 3-10-3 - 2-10-z 
2-10-3 - 3-IO-r - 2-10-l 

2-10-3 - 2.0 - 3.9 
l-10-3 - 6.7 - 14 
4*20-3 - 24 - 51 
4.10-’ - 51 - 117 

1.58 2.54 23.3 273 JSl- 1V 

3.10-a 2-10-5 2-10-a 1-10-c 2.10-4 
1.10-* g*10-4 1.10-Z 5-1o-3 9-10-s 
f-10-’ 3.10-’ 2-I()-’ g-lo-’ 1-10-L 

l-10-5 2_10-’ 5.10-’ $-lo-’ 2-10-I 

2-10-3 2-10-4 1.7 l-10-1 s*10-’ 
4-10-a 2.0 6.2 5-10-I 2.9 
Z-10-’ 1.5 13 4-lo-’ 7.4 

0.00 3.00 

- 2-lo-’ 
- I- lo+ 
- 2*10-’ 

- I-IO-’ 
- 2*10-’ 
- 1.6 
- 5.4 

2.42 10.1 

5.10-z 3-10-4 
2-10-’ 2-10-z 
4-10-l Z-10-’ 

S-10-’ s-10-1 
2.7 2.6 
9.2 8.8 

18 17 

symmetrical filter functions. For all filters with smaller convolutes, the accuracy of 
peak are2 recovery will be limited by the errors associated with sensing peak start and 
end rather than by the filter. Therefore peak area will always be the least sensitive peak 
parameter to distortion by digital filters. In all cases, the error in measuring a filtered 
peak area will increase as the peak asymmetry increases. 

The effect of quadratic-cubic and MA smooths on the first moment (ul, center 
of gravity) are negligible for a Gaussian peak. The errors in U, increase markedly 
as the convoluting integral is made larger for a fixed data set. However, even a 25 
point quadratic-cubic smooth will only shit the retention time by 0.5 set for a peak 
eluting in 30 min while the same peak at the same retention time will increase by 36 
set if a 2%point MA smooth is used. 

The error in the second moment (zc~, variance) was discussed earlier in the 
paper for Gaussian peaks and the resultant is tbhat the Type II peak will give smaller 
errors than ‘Lhe Gaussian for an ,MA smooth. The magnitude of the peak width error 
for the Gaussian may be derived from eqn. 11. The errors in z+ in a Type 11 peak 
are larger than those for a Gaussian peak using a polynomial smoothing function, 
although most reasonably sized filters will have a negligible effect. This is important 
in that the resolution and efficiency of the column are not degraded by the filter func- 
tion. However, a g-point MA filter could result in an apparent decrease in column 
resolution from 1.0 to 0.94 for a Gaussian peak. 
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The relative error introduced in skew of a Gaussian peak is negligible because 
the skew is zero by definition. Therefore only the results for the Type EI peak 2.r~ 
shown in Fig. 6. Skew (and excess) are seen to be particularly sensitive to ciigitd 

filtering. This is caused by the weighting of the tail of the peak in the c2lcul2tjon of u, 

and the high sensitivity to even minor changes in the profile of the tai1. Thus the r&&s 
are predictable: polynomial smooths will always introduce smatier errors than 2 
MA, 2nd the higher the order of the polynomial 2nd the smaller the convoluting inter- 
val, the sm2lIer the peak symmetry distortion. 

There is no efEct of peak symmetry after smoothing with 2 poiynoniial on 
the excess, which indicattes that the relative error introduced in the peak flatness and 
the increase in peak variance are of the same magnitude. This is not true for 2 MA 
smooth because of the effect of equally weighting data points ahead 2nd behind the 
data point of interest (p = 0) with asymmetric peaks. Therefore the effect is to flatten 
the peak more than to broaden it. In other words, the fourth moment (u.,) is extremely 
sensitive to shifts in the distribution of the peak area away from the center of &ravity. 
The large errors for the skew and excess, shown in Fig. 6, indicate that meaningful 
measurements will only be made for these parameters by using low-noise chrom2to- 
graphic systems 2nd peaks with a large signal-to-noise ratio. 

The e_ffcts of multiple smooths were described earlier 2s increasing the filter 
function by the kth power for X- consecutive smooths, and decreasing the frequency 
bandwidth_ The effects of ten consecutive smooths are shown in Fig. 7 to show the accu- 

racy of polynomial smooths for all reasonable chromatogmphic peak shapes and 
vlother reason for avoiding MA smoothing. The compounded errors in the Gaussian 
peak heights are: 0.37 % for the quadratic-cubic, < lo-‘% for the quariic-quintic, 

QD M A 

Fig. 7. Plot of the percent of original m height after ten consecutive smooths as a function of the 
number of points in the convolute interval for quadratic-cubic (QD), quintic-quartic (QT), and mov- 
ing average (MA) smooths. Solid and broken lines rep.sent Gaussian (285 data pointsfpeak) and 
Type II (a210 data points/peak) peaks, respectively. 
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Fig. 8. Simulated 6-component chromatogram shown without smoothing. Peak No. 1 is normalized 
to loon/, of ful1 scale. Peak sampling densities are given in Table IL 

22.7 % for the 9-point MA, and 8.75 yO for the 5-point MA. The corresponding errors 
for the Type II peak are: 7.76, 1.25, 49.6, and 29.r 74, respectively. 

Figs. S-14 are simulated chromatograms to show graphically the effects of 
applying different digital filters. The 6component chromatograms are simulated to 
illustrate the effects on a sharp narrow peak (No. l), a sharp peak with an unresolved 
shoulder (Nos. 2 and 3), a pair of overlapping peaks (Nos. 4 and 5), and a broad, 

skewed peak (No. 6) Fig. 8 shows the original, unsmoothed chromatogram, normal- 
ized to the peak height of peak No. 1. Table II describes the sampling density for the 

TABLE II 

PEAK HEIGHTS OF THE SIMULATED CHROMATOGRAM (FIG. 8) MEASURED AFTER 
DIGITAL FILTERING’ 

Peak hei@ (?&,I 

Peak No. I P2ak No. 6 

No smoothing loo 

3-pt. MA 72 94 
5-pt. MA 48 90 
9-F& MA 28 79 

17-pt. MA 15 56 

5-pt. quadratic-cubic 
9-pt. quadratic-cubic 

17-pt quzdraticxubic 
25-pt. quadratic-cubic 

9-pt quxtic-quintic 
17-pt. quartic-a_uintic 
25-pt. qw.rtic*uintic 

86 96 
57 94 
32 84 
22 70 

80 
48 
34 

97 
95 ‘_ . 
86 

- Sampling density for the simulated chromatogxam (data pints!fi): Peak No. 1 = 1.0; No. 
2 = 1.25; No. 3 = 1.43; No. 4 = 2.0; No. 5 = 2.22; No. 6 = 3.33. 
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Fig. 9. Simnlat& 6component chromatogram after smoothing with a j-point MA. Scaling factors 
same .a in Fig. 8. 

peaks and the attenuation factors for the sharp narrow peak with a typical but in- 
sufficient sampling density (No. 1) and the broad peak with an acceptable sampling 
density (No. 6)_ Note that in the chromato_w in Fi g. 8, the shoulder on peak No. 2 
is not discemable in that no peak broadening is apparent, and that the valley between 
peaks Nos. 4 and 5 is about 25 % of the peak height of peak No. 5. 

Using the same scaling factors for display as in Fig. 8, the results of 3- and 9- 
point MA smooths are shown in Figs. 9 and IO. The peak height recoveries, normal- 
ized to those in Fig. 8, are reported in Table II. More importantly,note that the 3-point 
MA has not seriously perturbed the peak shape, resolution, peak tail, or baseline com- 
pared with Fig. 8, even though the sampling density is too low on all of the peaks. 
However, Fig. 10 shows the striking contrast between a 3- and 9-point MA, where 
the differences are accentuated by the low sarnpliug density. In Fig. 10, peak No. 3 
serves to broaden and skew peak No. 2 and peaks Nos. 4 and 5 have been fused by 

Fig. 10. Simhted 6-cmnponent ehronatogrem after smoothing with a ‘)-point MA. Sc2iing factors 
s3mf: .zs in Fig. 8. 



the Hter. Similar comparisons may be made between Figs- II and 12 for the 9- and 
17-point quaclratic~ubic and Figs. 13 and 14 for the quutic-qrr~tic smmrh of the 
sane convo2yte intervals. The striking distinction between the 17-point polynomiaI 
Smooths in Figs_ Eand I4 is the resolution between pezks Nos. 3 znd 4 which iI- 
lustrates ~the power of the higher-order polynomials as previously discussed. The 
“ringing” on the Ieading and tziIing edges of the peaks is a consequence of the con- 
voluting coe&ients for higher-order polynomials where the sampling density is too 
low. The extreme case is where the convoluting interval is larger than the number of 
data points in the peak_ fn this case “ringing” atid peak area “amplification” will 
result as shown in Fig. 12. 

Fig. 11. Simulated Ckomponent chromatogram after smoothing with a g-point quadratic-cubic. 
Scaling factors sane as in Fig_ 8. 

Fig_ 12. Simuiated 6wmponent chomatogram after smoothing with a 17-point quadratic-cubic. 
Scaling factqrs same as in Fig. !Z. 
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F&z_ t3, Simuiated tiomponent chromatogram after smootfiing with a 9-point quzrtic-quintic, 
Scaling factors same 2.5 in Fig. 8. 

I __*-__jI__________________~__________-___ ‘tS_t’tti 

Fig. 14. Simulated fisompnent chrematogmm zfter smoothing with a 17-point quzrtic-quintic. 
Scding factors sane zzs in Fig. 8. 

The objective of this paper is to treat the effects of digital filters on chromato- 
graphic peaks and peak shape prrrameters. Tn addition to peak or si@al considerations, 
we will brie@ illustrate the effects on noise, although these eff&s are well known and 
have been treated comprehensively elsewhere 13J*. To quantitate the noise attenua- 
tion, we have defined a “tilter factor”, CD, by 

where a, is the standard deviation of the normal random @se and G, is the standard 
deviation of the noise after smoothing. Thus for @ = 0 there is no smoothing e&x$ 
because G,, = _a,, and @ = 1 represents complete smoothiti~_ such that the noise is 
below the detection limit (Go = 0). Fis. 15-17 illustrate the reductiqn of the normal 
random baseline noise before and after filtering for the g-point MA, qt+lratic-cubic, 



Fig. 15. Simulated normal random noise on a cixomatographic baseiine. Left-hand side is original 
noise trace normalized to 213 of full scale. Right-hand side is the same trace, displayed q.fter smooth- 
ing with a g-point MA. 

Fig. 16. Simulated normai rapdon noise on a chromato_mphic baseline. Left-hand side is origikxai 
noise trace normalized to 2/3 of fuH xale. Right-hand side is the same trace, displayed after smooth- 
ing with g-point quadratic-cubic. 

Fig_ 17_ Simu?at@ normal Fdom noise on a shromatograpbic baseline. Left-hand side is original 
noise trace normalized to 213 of full _Qie. G&t-hand side is the same trace, dispiayed after smooffi- 
ing with a 9-point quartic-quintic_ 
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and quartic-quintic smooths, respectively. The left-hand side of the ~baseline~ segment 
is the unfiltered noise display, normalized to two-‘&irds of~full~scaje for display, band 
the right-hand side of the trace is the same baseline segment after fihering. The Eker 
factors are given in Table III. Were the filter factor is large, the lower-frequency noise 
components may be observed (e.g., Fig. 15) which is often referred to as “wander” 
in the chromatographic literature. 

TABLE III 

,4TTENUATION OF NORMAL RANDOM NOISE 

Fiicer function Filtet factor 

9-pt. MA 0.702 
Ppt. quadratic-cubic 0.553 
9-pt. quartic-qtitic 0.387 

25pt. MA 0.825 
h5pt. quadratic-cubic 0.733 
25pt. quartic-quktic 0.667 

Fig. 18 compares the MA and polynomial filters treated in this paper in terms 
of the filter factor for each type as a function of the number of points in the con- 
volute. Thus, a 5point MA filter will reduce normal random noise with the same fiiter 
factor as an 1 l-point quadratic-cubic and a 1%point quaztic-quintic smooth. As the 
number of points in the convolute increases, the filter factor becomes Less affected 
by the type or order of the smooth. For the smaller, more commonly used convolute 
Intervals, Fig. 18 shows that the filter factor may range from 0.25 for a 7-point quartic- 
quintic filter to 0.65 for a 7-point MA. Note that the filter factor changes fastest in 
“&is range of convohites. 

SO. OF POiHTS IK CONVOLUTE 

Fig. 18. Respome of the GIcer factor for z~om.xzl ramlom noise as a fmction of the nwnbe~ of points 
In a convoIute titerval for movkxg average (MA), qua&at&cubic (Q/c), md quartic-quintic (Q:Q) 
smoothing functions. 
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Fig. I9 shows the cutoff EIter frequen&es for 5, E7-, and iPpoint quadratic- 
cubic Slters in terms of their e&ctiveness (9); The smaller the convolute interval, the 
higher the bindpass of the filter for a given potynomiai order and this is in agreement 
with the thtiory. For the range shown in Fi g. I?, the midpdint of the frequency cutoff 
ranges from 20 to 70 Hz which is not a large rang&. Therefore principal considera- 
tion should be given to choosing a filter OR the basis of the peak parameter to be mea; 
sured and the amplitude of the noise. This is the experirnentai ve&c&ion analogous 
to the theoretical curves shown in Fig. I, which emphasizes the fact that a digit4 
filter may be %medn to a cutoff frequency by design if the noise has been charac- 
terized and the filter factor is kncwn as a function of the frequency, the nUMber of 
points in the convolute interval, and the order of the polynomial. 
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Fig. 19. Frequency response of 5-,9- and 17-point quadrztic-cubic digital filters for normal random 
noise as measured by the filter factor. 

From Figs. S-15 it can be seen that S/N may be significantly improved to 
decrease detection Iimits. At the same time, it is pointed out that peak area, retention 
time, resoiution, and all other peak parameters for real chromato,qphic peaks are 
not conserved. It has been shown that alI kinds of digital lilters may be used to en- 
hance S/N and that the error level is dependent upon: (I) nUMbeF of data points/o; 
(2) band width of the peak; (3) amplitude of the noise; (4) frequency distribution of 
the noise; (5) peak shape parameter to be measured; (6) S/N, and (7) accuracy desired. 

IMPLEMENTATION IN PRACTICE - . 

-The V&an CDS-111 and CDS-101 (Varian Instrument Division) are new, 
dedicated, small chromatography data systems which serve as examples of the prac- 
tical considerations and trade-offs in designing and implementing digital filters. The 
follotig basic objectives governed the design of the filter algorithm in order to 
make the system as g&eranIIy applicable, accurate, pm&e, and reliable 2s possible 
within the cWstraints of a microprocessor-based system. The filter must: 
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(I) Reduce medium- and low-frequency noise from the column and detector. 
This noise is close to the frequency ofthe peak: Fnoise > 3 Fneak. High-frequency noise 
is attenuated by a two-pole analog filter and an integrating ADC (attenuation of 50- 
or 604~ power line noise and harmonics). 

(2) Conserve peak area, and limit the distortion of peak height and width. 
The peak area measurements must not be adversely affected by the digital filter (Le.. 
no side lobes or generation of false peaks, no distortion of peak shapes to afEect area 
measurement on fused peaks)_ 

(3) Calculate the first derivative of the detector signal (slope) for use in peak 
detection (peak-baseline discrimination). Reduce the slope noise due to the “fre- 
quency gain” characteristic of the diEerentiation process. The siope values must be 
reliable (accurate, precise, and continuous over the full domain of valuesj so that the 
peak detection programs do not have to contain the more complex noise-peak-base- 
line discrimination routines. Slope values for narrow peaks must cover a wide range 
while slope values for wide peaks must have high resolution. 

(+Operate with an existing ADC producing 20 conversions per second, with 
a resolution of 1 PV at the most sensitive range, and autoranging to 4,32 and 256 
t[V at higher voltage levels. Total dynamic range is 106. The ADC translates a smooth- 
ly changing signal iuto a stair-step progression of digita! values. With s!owly changing 
signals (Le., baseline), the ADC values remain constant until the signal moves into the 
next digital value. This produces a spike or pu!se in the first derivative, which should 
be suppressed to the extent of not asecting the peak detection programs. This effect 
is not present when the noise level of the signai equals or exceeds the resolution of 
the ADC. 

(5) Be self-adapting to changes in peak frequency, specifically to self-update 
filtering when peak widths increase. Also to adjust simultaneously the peak detection 
threshold level (the slope) to take advantage of the reduction of noise due to the filter- 
ing increase- Fixed-frequency filters are not suitable to isothermal or isocratic chro- 
matographic separations owing to the izcrease in peak widths. The filter should not 
self-adjust when peak widths remain constant as in temperature or gradient pro- 
grammed separations. The operator should be able to change the filter for different 
peak widths at will. 

(6) Be implemented in an S-bit, binary microcomputer having an average 
instruction execution time of 3O,~sec, and o_perate at the ADC speed (20 data points 
per second). 

The digital titer iri:!,r.~ 1 dt,.; -.wzw sofp;/are elements: a variable pre-integration 
step to provide the vziable frequency response characteristic (also known as data 
bunching); a Cpoint symm&ica! MA to suppress momentary signal curvature due 
to noise, but not suppress the trend of the siope caused by a real peak; a 5-point qua- 
dratic least-squares estimate of the first derivative; and an algorithm for the se& 
adjusting portion of the filter. 

The pre-integration step is disabled at the minimum peak width setting, 
leaving only the MA and first derivative calculation in operation. At wider peak widths, 
data points are summed in groups of 2, 4, 8. . . up to 256. This causes two effects: 
first, the time interval between the 4 data points in the MA and the 5 da2 points in 
the slope calcuIation is increased. The time interval changes from l/20 set with no 
pre-imegration :o I/l0 set with 2 points summed, and so on. This spreading effect 
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produces a reduction in noise by 42 for each doubling of the number of da&t points 
summed. The second elect is the reduction of noise produced by the integration process 
itself. This also produces noise reduction of 42, and thus the combined noise reduc- 
tion is (42}2 or 2. The dynamic range of the filter frequency is 256:i using this tech- 
nique. 0 

The MA smooth was selected because of its high efhciency in suppressing curva- 
ture (change in slope) of the data points contained within the MA. Because of its poten- 
tial for severeshape distortion, a sma!i &IA was se&ted. This allows efhcient piece-wise 
smoothing of the peak profile while still maintaining the peak shape. A 4point average 
was selected instead of the more usual 3- or S-point averages because of an area inte- 
gration consideration. The Cpoint average only includes 20% of the peak width at 
half-height at any time (20 dam points per peak width at half-height are used, or 8 
data points/o), which minimizes the peak shape distortion. The Cpoint average pro- 
duces a smoothed value at the midpoint of the average where in fact no data point 
exists. This $-data point of&t is used by the area integration routine to help compen- 
sate for the fact that val!ey points are located _5 da*& pcirt iate on the average. This 
improves the accuracy of peak area measurement on fused peaks if the results of 
replicate maiyses are averaged. 

The Epoint slope calculation uses the convolution technique. Here the least- 
square; estimate is calculated based on the data points after going tIirough pre- 
integration and the MA. One effect of pre-integration is scaling of the first derivative 
values_ As the number of points in the pre-integration step increases, the slcpe values 
increase as the square of the increase. This is due in part to the design of the filtering 
program because all normalization factors are grouped together at one operation. 
However, the scaling of the slope is reduced to a linear relationship of the number of 
points in the pre-inte,mtion step, and this produces the exact increase in peak 
detection sensitivity that can be made owing to the de&ease in noise produced by the 
change in the number of points used in the pre-integration step. 

Finally the filter is self-adapting by responding to the peak width of the current- 
ly r-luting chromatographic peaks. When a peak is 50 % wider than the expected peak 
width, the filter doubles the number of points in the pm-integration step. The change 
takes place only at valley points or on the baseline following the peak. To reduce the 
e&et of peak tailing the time from peak start to the peak maximum is used as the 
measure of peak w&h. The filter can also accept changes specified by the operator to 
occur at spe&c points in the chromatogram. 

The overall performance of this digital fihcr produced no measurable ch,ange 
in peak area measurements, and only depressed a Gaussian peak amplitude by 0.4 %. 
It adjusts itseX for variable-width peaks and simultaneousiy increases the peak dt- 
tection sensitivity. The noise characteristics of the ADC are easily handled by the filter. 
The Hter algorithm has an execution speed of about 20 msec per slope calculation in 
the microcomputer system, which allows enough time for execution of the real time 
peak detection pro.gram. 
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